『コンピュータの仕組み ハードウェア編』を読む(2)

しばらく積ん読状態だった本書だが、ふと思い出して手に取り、第1章「機械による計算 – 歯車で計算する」の章を読んだ。

この章では、手回し計算機(タイガー計算機)という、歯車で計算する機械式の計算機の仕組みを取り上げている。機械式の計算方法を知ることで、、計算自体の仕組みについて再学習した。

機械式おそるべし。この機械で行われている加減乗除の仕組みを詳しくみるだけで、繰り上がりやシフト、補数など、コンピュータの計算の理解に役立つテーマについて学習することができる。

特に、負の数の表現の説明は、補数の説明としてはとてもわかりやすいのではないかと思う。

試しに「3 – 5」を計算してみましょう。答えは「-2」ですが、歯車式だと違う結果になります。1桁の場合であれば、3→2→1→0→9→8と変化して「8」となります。2桁の場合は、十の位の繰り下がりが発生するので「98」となります。「-2」ではありません(もともと歯車はマイナス記号を表せないので、「-2」という表示ができるわけもないのですが)。

このような構造の計算機は”負の数”を扱えないのでしょうか? ここで、ちょっとした発想の転換を行います。「8」や「98」を「-2」であるとみなすのです。たとえば「9」や「99」は「-1」、「5」や「95」は「-5」です。そして実際の”正の数”である「8」や「98」については、使うのをあきらめるのです。

新人とかに補数の説明をするときに、このあたりを引くと説明しやすいかもしれない。

ところで、本章を読んでものすごく手回し計算機が触ってみたくなったのだが、どこか触れるところはあるのだろうか。さすがに販売はしていなさそうだし、知人にも持っているひとはいなそうだ。今度、株式会社タイガーでも訪れてみたいと思う。

気に入ったらシェアお願いします!

この記事を書いた人

こんにちは!カノといいます👓
インターネットやテクノロジー、ビジネスモデルや歴史(世界史・日本史)、美術などが好きです。メガネのせいか真面目っぽく見えるらしいですが、基本的には昔からいい加減な性格です。
このブログは昔からずっと個人的な日記みたいな感じで書いてきていて、基本的には個人的なログになりますが、興味のあるところだけ読んでいただけるとうれしいです。コメントやTwitterのフォローなどは大歓迎です。

コメント

コメントする

目次